Як вирішувати межі з тангенсом. Перша чудова межа: приклади знаходження, завдання та докладні рішення

З вищезазначеної статті Ви зможете дізнатися, що ж таке межа, і з чим її їдять – це дуже важливо. Чому? Можна не розуміти, що таке визначники та успішно їх вирішувати, можна зовсім не розуміти, що таке похідна та знаходити їх на «п'ятірку». Але якщо Ви не розумієте, що таке межа, то з вирішенням практичних завдань доведеться туго. Також не зайвим буде ознайомитись із зразками оформлення рішень та моїми рекомендаціями щодо оформлення. Вся інформація викладена у простій та доступній формі.

А для цілей цього уроку нам знадобляться такі методичні матеріали: Чудові межіі Тригонометричні формули. Їх можна знайти на сторінці. Найкраще методички роздрукувати - це значно зручніше, до того ж до них часто доведеться звертатися в офлайні.

Чим чудові чудові межі? Чудовість цих меж полягає в тому, що вони доведені найбільшими розумами знаменитих математиків, і вдячним нащадкам не доводиться страждати страшними межами з нагромадженням тригонометричних функцій, логарифмів, ступенів. Тобто при знаходженні меж ми користуватимемося готовими результатами, які доведені теоретично.

Чудових меж існує кілька, але на практиці у студентів-заочників у 95% випадків фігурують дві чудові межі: Перша чудова межа, Друга чудова межа. Слід зазначити, що це назви, що історично склалися, і, коли, наприклад, говорять про «першу чудову межу», то мають на увазі під цим цілком певну річ, а не якусь випадкову, взяту зі стелі межу.

Перша чудова межа

Розглянемо наступну межу: (замість рідної літери «хе» я використовуватиму грецьку літеру «альфа», це зручніше з погляду подачі матеріалу).

Відповідно до нашого правила знаходження меж (див. статтю Межі. Приклади рішень) Пробуємо підставити нуль у функцію: у чисельнику в нас виходить нуль (синус нуля дорівнює нулю), у знаменнику, очевидно, теж нуль. Таким чином, ми стикаємося з невизначеністю виду, яку, на щастя, не треба розкривати. У курсі математичного аналізу доводиться, що:

Цей математичний факт зветься Першої чудової межі. Аналітичний доказ межі наводити не буду, а ось його геометричний змістрозглянемо на уроці про нескінченно малих функціях.

Нерідко в практичних завданняхфункції можуть бути розташовані по-іншому, це нічого не змінює:

– та сама перша чудова межа.

Але самостійно переставляти чисельник та знаменник не можна! Якщо дана межа у вигляді , то і вирішувати його потрібно в такому вигляді, нічого не переставляючи.

Насправді як параметра може бути як змінна , а й елементарна функція, складна функція. Важливо лише, щоб вона прагнула нуля.

Приклади:
, , ,

Тут , , , , І все гуд - перший чудовий межа застосуємо.

А ось наступний запис – єресь:

Чому? Тому що багаточлен не прагне нуля, він прагне п'ятірки.

До речі, питання на засипку, а чому дорівнює межа ? Відповідь можна знайти наприкінці уроку.

На практиці не все так гладко, майже ніколи студенту не запропонують вирішити халявну межу та отримати легкий залік. Хммм… Пишу ці рядки, і спала на думку дуже важлива думка – все-таки «халявні» математичні визначення та формули наче краще пам'ятати напам'ять, це може надати неоціненну допомогу на заліку, коли питання вирішуватиметься між «двійкою» і «трійкою», і викладач вирішить поставити студенту якесь просте питання або запропонувати вирішити найпростіший приклад («а може він(а) все-таки знає чого?!»).

Переходимо до розгляду практичних прикладів:

Приклад 1

Знайти межу

Якщо ми помічаємо в межі синус, то це нас відразу має наштовхувати на думку про можливість застосування першої чудової межі.

Спочатку пробуємо підставити 0 у вираз під знак межі (робимо це подумки або на чернетці):

Отже, у нас є невизначеність виду, її обов'язково вказуємов оформленні рішення. Вираз під знаком межі у нас схоже на першу чудову межу, але це не зовсім він, під синусом знаходиться, а в знаменнику.

У подібних випадках перша чудова межа нам потрібно організувати самостійно, використовуючи штучний прийом. Хід міркувань може бути таким: "під синусом у нас, значить, у знаменнику нам теж потрібно отримати".
А робиться це дуже просто:

Тобто знаменник штучно множиться в даному випадку на 7 і ділиться на ту ж сімку. Тепер запис у нас набув знайомих обрисів.
Коли завдання оформляється від руки, то перша чудова межа бажано помітити простим олівцем:


Що сталося? По суті, обведений вираз у нас перетворився на одиницю і зник у творі:

Тепер тільки залишилося позбутися триповерховості дробу:

Хто забув спрощення багатоповерхових дробів, будь ласка, освіжіть матеріал у довіднику Гарячі формули шкільного курсу математики .

Готово. Остаточна відповідь:

Якщо не хочеться використовувати позначки олівцем, то рішення можна оформити так:



Використовуємо першу чудову межу

Приклад 2

Знайти межу

Знову ми бачимо межі дріб і синус. Пробуємо підставити в чисельник і знаменник нуль:

Справді, у нас невизначеність і, отже, треба спробувати організувати першу чудову межу. На уроці Межі. Приклади рішеньми розглядали правило, що коли у нас є невизначеність, то потрібно розкласти чисельник та знаменник на множники. Тут – те саме, ступеня ми представимо як твори (множників):

Аналогічно попередньому прикладу, обводимо олівцем чудові межі (тут їх дві), і вказуємо, що вони прагнуть одиниці:

Власне, відповідь готова:

У наступних прикладах, я не займатимуся мистецтвами в Пейнті, думаю, як правильно оформляти рішення у зошиті – Вам вже зрозуміло.

Приклад 3

Знайти межу

Підставляємо нуль у вираз під знаком межі:

Отримано невизначеність, яку потрібно розкривати. Якщо в межі є тангенс, то майже завжди його перетворюють на синус і косинус за відомою тригонометричною формулою (до речі, з котангенсом роблять приблизно те саме, див. методичний матеріал Гарячі тригонометричні формули на сторінці Математичні формули, таблиці та довідкові матеріали).

В даному випадку:

Косинус нуля дорівнює одиниці, і його легко позбутися (не забуваємо помітити, що він прагне одиниці):

Отже, якщо межі косинус є МНОЖИТЕЛЕМ, його, грубо кажучи, треба перетворити на одиницю, що зникає у творі.

Тут все вийшло простіше, без жодних множин і поділів. Перша чудова межа теж перетворюється на одиницю і зникає у творі:

У результаті отримано нескінченність, буває таке.

Приклад 4

Знайти межу

Пробуємо підставити нуль у чисельник та знаменник:

Отримано невизначеність (косинус нуля, як ми пам'ятаємо, дорівнює одиниці)

Використовуємо тригонометричну формулу. Візьміть на замітку! Межі із застосуванням цієї формули чомусь зустрічаються дуже часто.

Постійні множники винесемо за значок межі:

Організуємо першу чудову межу:


Тут у нас тільки одна чудова межа, яка перетворюється на одиницю і зникає у творі:

Позбавимося триповерховості:

Межа фактично вирішена, вказуємо, що синус, що залишився, прагне до нуля:

Приклад 5

Знайти межу

Цей приклад складніший, спробуйте розібратися самостійно:

Деякі межі можна звести до 1-ї чудової межі шляхом заміни змінної, про це можна прочитати трохи пізніше в статті Методи розв'язання меж.

Друга чудова межа

Теоретично математичного аналізу доведено, що:

Цей факт має назву другої чудової межі.

Довідка: - Це ірраціональне число.

Як параметр може бути як змінна , а й складна функція. Важливо лише, щоб вона прагнула нескінченності.

Приклад 6

Знайти межу

Коли вираз під знаком межі перебуває у ступені – це перша ознака того, що потрібно спробувати застосувати другу чудову межу.

Але спочатку, як завжди, пробуємо підставити нескінченно велику кількість у вираз, за ​​яким принципом це робиться, розібрано на уроці. Межі. Приклади рішень.

Неважко помітити, що при основа ступеня , а показник – , тобто є, невизначеність виду:

Ця невизначеність якраз і розкривається за допомогою другої чудової межі. Але, як часто буває, друга чудова межа не лежить на блюдечку з блакитною облямівкою, і його потрібно штучно організувати. Розмірковувати можна так: у цьому прикладі параметр , отже, у показнику нам теж треба організувати . Для цього зводимо основу в ступінь , і щоб вираз не змінилося - зводимо в ступінь :

Коли завдання оформляється від руки, позначаємо олівцем:


Практично все готово, страшний ступінь перетворився на симпатичну букву:

При цьому сам значок межі переміщуємо до показника:

Приклад 7

Знайти межу

Увага! Межа подібного типу зустрічається дуже часто, будь ласка, дуже уважно вивчіть цей приклад.

Пробуємо підставити нескінченно велике число у вираз, що стоїть під знаком межі:

В результаті отримано невизначеність. Але друга чудова межа застосовується до невизначеності виду. Що робити? Потрібно перетворити основу ступеня. Розмірковуємо так: у знаменнику у нас, значить, у чисельнику теж треба організувати.

Перша чудова межа виглядає наступним чином: lim x → 0 sin x x = 1 .

У практичних прикладах часто зустрічаються модифікації першої чудової межі: lim x → 0 sin k · x k · x = 1 де k – деякий коефіцієнт.

Пояснимо: lim x → 0 sin (k · x) k · x = t = k · x і з x → 0 слід t → 0 = lim t → 0 sin (t) t = 1.

Наслідки першої чудової межі:

  1. lim x → 0 x sin x = lim x → 0 = 1 sin x x = 1 1 = 1
  1. lim x → 0 k · x sin k · x = lim x → 0 1 sin (k · x) k · x = 1 1 = 1

Зазначені слідства досить легко довести, застосувавши правило Лопіталя або заміну нескінченно малих функцій.

Розглянемо деякі завдання на знаходження межі за першою чудовою межею; дамо докладний опис рішення.

Приклад 1

Необхідно визначити межу, не використовуючи правило Лопіталя: lim x → 0 sin (3 x) 2 x .

Рішення

Підставимо значення:

lim x → 0 sin (3 x) 2 x = 0 0

Ми бачимо, що виникла невизначеність нуль ділити на нуль. Звернемося до таблиці невизначеностей, щоб задати спосіб розв'язання. Поєднання синуса та його аргументу дає нам підказку про використання першої чудової межі, проте для початку перетворимо вираз. Зробимо множення чисельника та знаменника дробу на 3 x і отримаємо:

lim x → 0 sin (3 x) 2 x = 0 0 = lim x → 0 3 x · sin (3 x) 3 x · (2 ​​x) = lim x → 0 sin (3 x) 3 x · 3 x 2 x = = lim x → 0 3 2 · sin (3 x) 3 x

Спираючись на слідство з першої чудової межі, маємо: lim x → 0 sin (3 x) 3 x = 1 .

Тоді приходимо до результату:

lim x → 0 3 2 · sin (3 x) 3 x = 3 2 · 1 = 3 2

Відповідь: lim x → 0 sin (3 x) 3 x = 3 2 .

Приклад 2

Необхідно знайти межу lim x → 0 1 - cos (2 x) 3 x 2 .

Рішення

Підставимо значення та отримаємо:

lim x → 0 1 - cos (2 x) 3 x 2 = 1 - cos (2 · 0) 3 · 0 2 = 1 - 1 0 = 0 0

Ми бачимо невизначеність нуль ділити на нуль. Зробимо перетворення чисельника з використанням формул тригонометрії:

lim x → 0 1 - cos (2 x) 3 x 2 = 0 0 = lim x → 0 2 sin 2 (x) 3 x 2

Бачимо, що тепер тут можливе застосування першої чудової межі:

lim x → 0 2 sin 2 (x) 3 x 2 = lim x → 0 2 3 · sin x x · sin x x = 2 3 · 1 · 1 = 2 3

Відповідь: lim x → 0 1 - cos (2 x) 3 x 2 = 2 3 .

Приклад 3

Необхідно здійснити обчислення межі lim x → 0 a r c sin (4 x) 3 x .

Рішення

Підставимо значення:

lim x → 0 a rc sin (4 x) 3 x = rc sin (4 · 0) 3 · 0 = 0 0

Ми бачимо невизначеність ділити нуль на нуль. Зробимо заміну:

arc sin (4 x) = t ⇒ sin (arc sin (4 x)) = sin (t) 4 x = sin (t) ⇒ x = 1 4 sin (t) lim x → 0 (arc sin (4 x) ) = arc sin (4 · 0) = 0, значить t → 0 при x → 0.

У такому разі, після заміни змінної, межа набуває вигляду:

lim x → 0 a r c sin (4 x) 3 x = 0 0 = lim t → 0 t 3 · 1 4 sin (t) = = lim t → 0 4 3 · t sin t = 4 3 · 1 = 4 3

Відповідь: lim x → 0 a r sin (4 x) 3 x = 4 3 .

Для більш повного розуміння матеріалу статті слід повторити матеріал теми «Межі, основні визначення, приклади знаходження, завдання та рішення».

Якщо Ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Першим чудовим межею називають таку рівність:

\begin(equation)\lim_(\alpha\to(0))\frac(\sin\alpha)(\alpha)=1 \end(equation)

Так як при $ \ alpha \ to (0) $ маємо $ \ sin \ alpha \ to (0) $, то кажуть, що перша чудова межа розкриває невизначеність виду $ \ frac (0) (0) $. Взагалі кажучи, у формулі (1) замість змінної $\alpha$ під знаком синуса і в знаменнику може бути розташоване будь-яке вираження, - аби виконувалися дві умови:

  1. Висловлювання під знаком синуса й у знаменнику одночасно прагнуть нуля, тобто. є невизначеність виду $\frac(0)(0)$.
  2. Вирази під знаком синуса і знаменнику збігаються.

Часто використовуються також наслідки з першої чудової межі:

\begin(equation) \lim_(\alpha\to(0))\frac(\tg\alpha)(\alpha)=1 \end(equation) \begin(equation) \lim_(\alpha\to(0) )\frac(\arcsin\alpha)(\alpha)=1 \end(equation) \begin(equation) \lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=1 \end(equation)

На цій сторінці вирішено одинадцять прикладів. Приклад №1 присвячений доказу формул (2)-(4). Приклади №2, №3, №4 та №5 містять рішення із докладними коментарями. Приклади №6-10 містять рішення практично без коментарів, бо докладні пояснення було надано у попередніх прикладах. При вирішенні використовуються деякі тригонометричні формули, які можна знайти.

Зауважу, що наявність тригонометричних функцій разом з невизначеністю $\frac(0)(0)$ ще не означає обов'язкового застосування першої чудової межі. Іноді буває досить простих тригонометричних перетворень, наприклад, див.

Приклад №1

Довести, що $\lim_(\alpha\to(0))\frac(\tg\alpha)(\alpha)=1$, $\lim_(\alpha\to(0))\frac(\arcsin\alpha )(\alpha)=1$, $\lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=1$.

а) Так як $ \ tg \ alpha = \ frac (\ sin \ alpha) (\ cos \ alpha) $, то:

$$ \lim_(\alpha\to(0))\frac(\tg(\alpha))(\alpha)=\left|\frac(0)(0)\right| =\lim_(\alpha\to(0))\frac(\sin(\alpha))(\alpha\cos(\alpha)) $$

Оскільки $\lim_(\alpha\to(0))\cos(0)=1$ і $\lim_(\alpha\to(0))\frac(\sin\alpha)(\alpha)=1$ , то:

$$ \lim_(\alpha\to(0))\frac(\sin(\alpha))(\alpha\cos(\alpha)) =\frac(\displaystyle\lim_(\alpha\to(0)) \frac(\sin(\alpha))(\alpha))(\displaystyle\lim_(\alpha\to(0))\cos(\alpha)) =\frac(1)(1) =1. $$

б) Зробимо заміну $ \ alpha = \ sin (y) $. Оскільки $\sin(0)=0$, то з умови $\alpha\to(0)$ маємо $y\to(0)$. Крім того, існує околиця нуля, в якій $\arcsin\alpha=\arcsin(\sin(y))=y$, тому:

$$ \lim_(\alpha\to(0))\frac(\arcsin\alpha)(\alpha)=\left|\frac(0)(0)\right| =\lim_(y\to(0))\frac(y)(\sin(y)) =\lim_(y\to(0))\frac(1)(\frac(\sin(y))( y)) =\frac(1)(\displaystyle\lim_(y\to(0))\frac(\sin(y))(y)) =\frac(1)(1) =1. $$

Рівність $\lim_(\alpha\to(0))\frac(\arcsin\alpha)(\alpha)=1$ доведено.

в) Зробимо заміну $ alpha = tg (y) $. Оскільки $\tg(0)=0$, то умови $\alpha\to(0)$ і $y\to(0)$ еквівалентні. Крім того, існує околиця нуля, в якій $\arctg\alpha=\arctg\tg(y))=y$, тому, спираючись на результати пункту а), матимемо:

$$ \lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=\left|\frac(0)(0)\right| =\lim_(y\to(0))\frac(y)(\tg(y)) =\lim_(y\to(0))\frac(1)(\frac(\tg(y))( y)) =\frac(1)(\displaystyle\lim_(y\to(0))\frac(\tg(y))(y)) =\frac(1)(1) =1. $$

Рівність $\lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=1$ доведено.

Рівності а), б), в) часто використовуються поряд із першою чудовою межею.

Приклад №2

Обчислити межу $\lim_(x\to(2))\frac(\sin\left(\frac(x^2-4)(x+7)\right))(\frac(x^2-4)( x+7))$.

Оскільки $\lim_(x\to(2))\frac(x^2-4)(x+7)=\frac(2^2-4)(2+7)=0$ і $\lim_( x\to(2))\sin\left(\frac(x^2-4)(x+7)\right)=\sin(0)=0$, тобто. і чисельник і знаменник дробу одночасно прагнуть нулю, то тут маємо справу з невизначеністю виду $\frac(0)(0)$, тобто. виконано. Крім того, видно, що вирази під знаком синуса і в знаменнику збігаються (тобто виконано і):

Отже, обидві умови, перелічені на початку сторінки, виконані. На цьому випливає, що застосовна формула , тобто. $\lim_(x\to(2)) \frac(\sin\left(\frac(x^2-4)(x+7)\right))(\frac(x^2-4)(x+ 7)) = 1 $.

Відповідь: $\lim_(x\to(2))\frac(\sin\left(\frac(x^2-4)(x+7)\right))(\frac(x^2-4)(x +7)) = 1 $.

Приклад №3

Знайти $\lim_(x\to(0))\frac(\sin(9x))(x)$.

Оскільки $\lim_(x\to(0))\sin(9x)=0$ і $\lim_(x\to(0))x=0$, ми маємо справу з невизначеністю виду $\frac(0 ) (0) $, тобто. виконано. Проте вирази під знаком синуса і знаменнику не збігаються. Тут потрібно підігнати вираз у знаменнику під необхідну форму. Нам необхідно, щоб у знаменнику розташувався вираз $9x$ - тоді стане істинним. По суті, нам не вистачає множника $9$ у знаменнику, який не так вже й складно ввести, - просто домножити вираз у знаменнику на $9$. Природно, що для компенсації домноження на $9$ доведеться відразу на $9$ і розділити:

$$ \lim_(x\to(0))\frac(\sin(9x))(x)=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\sin(9x))(9x\cdot\frac(1)(9)) =9\lim_(x\to(0))\frac(\sin (9x))(9x) $$

Тепер вирази у знаменнику та під знаком синуса збіглися. Обидві умови для межі $\lim_(x\to(0))\frac(\sin(9x))(9x)$ виконані. Отже, $\lim_(x\to(0))\frac(\sin(9x))(9x)=1$. А це означає, що:

$$ 9\lim_(x\to(0))\frac(\sin(9x))(9x)=9cdot(1)=9. $$

Відповідь: $\lim_(x\to(0))\frac(\sin(9x))(x)=9$.

Приклад №4

Знайти $\lim_(x\to(0))\frac(\sin(5x))(\tg(8x))$.

Оскільки $\lim_(x\to(0))\sin(5x)=0$ і $\lim_(x\to(0))\tg(8x)=0$, то тут ми маємо справу з невизначеністю виду $\frac(0)(0)$. Однак форма першої чудової межі порушена. Чисельник, що містить $\sin(5x)$, вимагає наявності у знаменнику $5x$. У цій ситуації найпростіше розділити чисельник на $5x$, - і відразу на $5x$ домножити. Крім того, проробимо аналогічну операцію і зі знаменником, домноживши та розділивши $\tg(8x)$ на $8x$:

$$\lim_(x\to(0))\frac(\sin(5x))(\tg(8x))=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\frac(\sin(5x))(5x)\cdot(5x))(\frac(\tg(8x))(8x)\cdot(8x) )$$

Скорочуючи на $x$ і виносячи константу $\frac(5)(8)$ за знак межі, отримаємо:

$$ \lim_(x\to(0))\frac(\frac(\sin(5x))(5x)\cdot(5x))(\frac(\tg(8x))(8x)\cdot(8x )) =\frac(5)(8)\cdot\lim_(x\to(0))\frac(\frac(\sin(5x))(5x))(\frac(\tg(8x))( 8x)) $$

Зверніть увагу, що $\lim_(x\to(0))\frac(\sin(5x))(5x)$ повністю задовольняє вимогам для першої чудової межі. Для відшукання $\lim_(x\to(0))\frac(\tg(8x))(8x)$ застосовна формула :

$$ \frac(5)(8)\cdot\lim_(x\to(0))\frac(\frac(\sin(5x))(5x))(\frac(\tg(8x))(8x )) =\frac(5)(8)\cdot\frac(\displaystyle\lim_(x\to(0))\frac(\sin(5x))(5x))(\displaystyle\lim_(x\to (0))\frac(\tg(8x))(8x)) =\frac(5)(8)\cdot\frac(1)(1) =\frac(5)(8). $$

Відповідь: $\lim_(x\to(0))\frac(\sin(5x))(\tg(8x))=\frac(5)(8)$.

Приклад №5

Знайти $\lim_(x\to(0))\frac(\cos(5x)-\cos^3(5x))(x^2)$.

Оскільки $\lim_(x\to(0))(\cos(5x)-\cos^3(5x))=1-1=0$ (нагадаю, що $\cos(0)=1$) і $\lim_(x\to(0))x^2=0$, ми маємо справу з невизначеністю виду $\frac(0)(0)$. Однак, щоб застосувати першу чудову межу, слід позбутися косинуса в чисельнику, перейшовши до синусів (щоб потім застосувати формулу) або тангенсів (щоб потім застосувати формулу). Зробити це можна таким перетворенням:

$$\cos(5x)-\cos^3(5x)=\cos(5x)\cdot\left(1-\cos^2(5x)\right)$$ $$\cos(5x)-\cos ^3(5x)=\cos(5x)\cdot\left(1-\cos^2(5x)\right)=\cos(5x)\cdot\sin^2(5x).$$

Повернемося до межі:

$$ \lim_(x\to(0))\frac(\cos(5x)-\cos^3(5x))(x^2)=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\cos(5x)\cdot\sin^2(5x))(x^2) =\lim_(x\to(0))\left(\cos (5x)\cdot\frac(\sin^2(5x))(x^2)\right) $$

Дроб $\frac(\sin^2(5x))(x^2)$ вже близька до тієї форми, що потрібно для першої чудової межі. Трохи попрацюємо з дробом $\frac(\sin^2(5x))(x^2)$, підганяючи її під першу чудову межу (врахуйте, що вирази в чисельнику та під синусом повинні збігтися):

$$\frac(\sin^2(5x))(x^2)=\frac(\sin^2(5x))(25x^2\cdot\frac(1)(25))=25\cdot\ frac(\sin^2(5x))(25x^2)=25\cdot\left(\frac(\sin(5x))(5x)\right)^2$$

Повернемося до межі:

$$ \lim_(x\to(0))\left(\cos(5x)\cdot\frac(\sin^2(5x))(x^2)\right) =\lim_(x\to(0) ))\left(25\cos(5x)\cdot\left(\frac(\sin(5x))(5x)\right)^2\right)=\=25\cdot\lim_(x\to( 0))\cos(5x)\cdot\lim_(x\to(0))\left(\frac(\sin(5x))(5x)\right)^2 =25\cdot(1)\cdot( 1 ^ 2) = 25. $$

Відповідь: $\lim_(x\to(0))\frac(\cos(5x)-\cos^3(5x))(x^2)=25$.

Приклад №6

Знайти межу $\lim_(x\to(0))\frac(1-\cos(6x))(1-\cos(2x))$.

Оскільки $\lim_(x\to(0))(1-\cos(6x))=0$ і $\lim_(x\to(0))(1-\cos(2x))=0$, ми маємо справу з невизначеністю $\frac(0)(0)$. Розкриємо її за допомогою першої чудової межі. Для цього перейдемо від косинусів до синусів. Оскільки $1-\cos(2\alpha)=2\sin^2(\alpha)$, то:

$$1-\cos(6x)=2\sin^2(3x);\;1-\cos(2x)=2\sin^2(x).$$

Переходячи в заданій межі до синусів, матимемо:

$$ \lim_(x\to(0))\frac(1-\cos(6x))(1-\cos(2x))=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(2\sin^2(3x))(2\sin^2(x)) =\lim_(x\to(0))\frac(\sin^ 2(3x))(\sin^2(x))=\\ =\lim_(x\to(0))\frac(\frac(\sin^2(3x))((3x)^2)\ cdot(3x)^2)(\frac(\sin^2(x))(x^2)\cdot(x^2)) =\lim_(x\to(0))\frac(\left(\) frac(\sin(3x))(3x)\right)^2\cdot(9x^2))(\left(\frac(\sin(x))(x)\right)^2\cdot(x^ 2)) =9\cdot\frac(\displaystyle\lim_(x\to(0))\left(\frac(\sin(3x))(3x)\right)^2)(\displaystyle\lim_(x \to(0))\left(\frac(\sin(x))(x)\right)^2) =9cdot\frac(1^2)(1^2) =9. $$

Відповідь: $\lim_(x\to(0))\frac(1-\cos(6x))(1-\cos(2x))=9$.

Приклад №7

Обчислити межу $\lim_(x\to(0))\frac(\cos(\alpha(x))-\cos(\beta(x)))(x^2)$ за умови $\alpha\neq\ beta $.

Детальні пояснення були дані раніше, тут просто відзначимо, що знову є невизначеність $\frac(0)(0)$. Перейдемо від косинусів до синусів, використовуючи формулу

$$\cos\alpha-\cos\beta=-2\sin\frac(\alpha+\beta)(2)\cdot\sin\frac(\alpha-\beta)(2).$$

Використовуючи вказану формулу, отримаємо:

$$ \lim_(x\to(0))\frac(\cos(\alpha(x))-\cos(\beta(x)))(x^2)=\left|\frac(0)( 0) \right| =\lim_(x\to(0))\frac(-2\sin\frac(\alpha(x)+\beta(x))(2)\cdot\sin\frac(\alpha(x)-\ beta(x))(2))(x^2)=\\=-2\cdot\lim_(x\to(0))\frac(\sin\left(x\cdot\frac(\alpha+\beta) )(2)\right)\cdot\sin\left(x\cdot\frac(\alpha-beta)(2)\right))(x^2) =-2\cdot\lim_(x\to( 0))\left(\frac(\sin\left(x\cdot\frac(\alpha+\beta)(2)\right))(x)\cdot\frac(\sin\left(x\cdot\frac) (\alpha-\beta)(2)\right))(x)\right)=\\ =-2\cdot\lim_(x\to(0))\left(\frac(\sin\left(x) \cdot\frac(\alpha+\beta)(2)\right))(x\cdot\frac(\alpha+\beta)(2))\cdot\frac(\alpha+\beta)(2)\cdot\frac (\sin\left(x\cdot\frac(\alpha-\beta)(2)\right))(x\cdot\frac(\alpha-\beta)(2))\cdot\frac(\alpha- \beta)(2)\right)=\\=-\frac((\alpha+\beta)\cdot(\alpha-\beta))(2)\lim_(x\to(0))\frac(\ sin\left(x\cdot\frac(\alpha+\beta)(2)\right))(x\cdot\frac(\alpha+\beta)(2))\cdot\lim_(x\to(0)) \frac(\sin\left(x\cdot\frac(\alpha-\beta)(2)\right))(x\cdot\frac(\alpha-\beta)(2)) =-\frac(\ alpha^2-\beta^2)(2)\cdot(1)\cdot(1) =\frac(\beta^2-\alpha^2)(2). $$

Відповідь: $\lim_(x\to(0))\frac(\cos(\alpha(x))-\cos(\beta(x)))(x^2)=\frac(\beta^2-\ alpha^2) (2) $.

Приклад №8

Знайти межу $\lim_(x\to(0))\frac(\tg(x)-\sin(x))(x^3)$.

Оскільки $\lim_(x\to(0))(\tg(x)-\sin(x))=0$ (нагадаю, що $\sin(0)=\tg(0)=0$) і $\lim_(x\to(0))x^3=0$, то тут ми маємо справу з невизначеністю виду $\frac(0)(0)$. Розкриємо її так:

$$ \lim_(x\to(0))\frac(\tg(x)-\sin(x))(x^3)=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\frac(\sin(x))(\cos(x))-\sin(x))(x^3) =\lim_(x\to( 0))\frac(\sin(x)\cdot\left(\frac(1)(\cos(x))-1\right))(x^3) =\lim_(x\to(0)) \frac(\sin(x)\cdot\left(1-\cos(x)\right))(x^3\cdot\cos(x))=\\ =\lim_(x\to(0)) \frac(\sin(x)\cdot(2)\sin^2\frac(x)(2))(x^3\cdot\cos(x)) =\frac(1)(2)\cdot\ lim_(x\to(0))\left(\frac(\sin(x))(x)\cdot\left(\frac(\sin\frac(x)(2))(\frac(x)( 2))\right)^2\cdot\frac(1)(\cos(x))\right) =\frac(1)(2)\cdot(1)\cdot(1^2)\cdot(1 ) = frac(1)(2). $$

Відповідь: $\lim_(x\to(0))\frac(\tg(x)-\sin(x))(x^3)=\frac(1)(2)$.

Приклад №9

Знайти межу $\lim_(x\to(3))\frac(1-\cos(x-3))((x-3)\tg\frac(x-3)(2))$.

Оскільки $\lim_(x\to(3))(1-\cos(x-3))=0$ і $\lim_(x\to(3))(x-3)\tg\frac(x -3) (2) = 0 $, то є невизначеність виду $ \ frac (0) (0) $. Перед тим, як переходити до її розкриття, зручно зробити заміну змінною таким чином, щоб нова змінна прямувала до нуля (зверніть увагу, що у формулах змінна $\alpha\to 0$). Найпростіше ввести змінну $t=x-3$. Однак задля зручності подальших перетворень (цю вигоду можна помітити під час наведеного нижче рішення) варто зробити таку заміну: $t=\frac(x-3)(2)$. Зазначу, що обидві заміни застосовні в даному випадку, просто друга заміна дозволить менше працювати з дробами. Оскільки $x\to(3)$, то $t\to(0)$.

$$ \lim_(x\to(3))\frac(1-\cos(x-3))((x-3)\tg\frac(x-3)(2))=\left|\frac (0)(0)\right| =\left|\begin(aligned)&t=\frac(x-3)(2);\&t\to(0)\end(aligned)\right| =\lim_(t\to(0))\frac(1-\cos(2t))(2t\cdot\tg(t)) =\lim_(t\to(0))\frac(2\sin^ 2t)(2t\cdot\tg(t)) =\lim_(t\to(0))\frac(\sin^2t)(t\cdot\tg(t))=\\ =\lim_(t\ to(0))\frac(\sin^2t)(t\cdot\frac(\sin(t))(\cos(t))) =\lim_(t\to(0))\frac(\sin (t)\cos(t))(t) =\lim_(t\to(0))\left(\frac(\sin(t))(t)\cdot\cos(t)\right) =\ lim_(t\to(0))\frac(\sin(t))(t)\cdot\lim_(t\to(0))\cos(t) =1\cdot(1) =1. $$

Відповідь: $\lim_(x\to(3))\frac(1-\cos(x-3))((x-3)\tg\frac(x-3)(2))=1$.

Приклад №10

Знайти межу $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\left(\frac(\pi)(2)-x\right)^2 ) $.

Знову маємо справу з невизначеністю $\frac(0)(0)$. Перед тим, як переходити до її розкриття, зручно зробити заміну змінною таким чином, щоб нова змінна прямувала до нуля (зверніть увагу, що у формулах змінна $\alpha\to(0)$). Найпростіше ввести змінну $t=\frac(\pi)(2)-x$. Оскільки $x\to\frac(\pi)(2)$, то $t\to(0)$:

$$ \lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\left(\frac(\pi)(2)-x\right)^2) =\left|\frac(0)(0)\right| =\left|\begin(aligned)&t=\frac(\pi)(2)-x;\&t\to(0)\end(aligned)\right| =\lim_(t\to(0))\frac(1-\sin\left(\frac(\pi)(2)-t\right))(t^2) =\lim_(t\to(0) ))\frac(1-\cos(t))(t^2)=\\ =\lim_(t\to(0))\frac(2\sin^2\frac(t)(2))( t^2) =2\lim_(t\to(0))\frac(\sin^2\frac(t)(2))(t^2) =2\lim_(t\to(0))\ frac(\sin^2\frac(t)(2))(\frac(t^2)(4)\cdot(4)) =\frac(1)(2)\cdot\lim_(t\to( 0))\left(\frac(\sin\frac(t)(2))(\frac(t)(2))\right)^2 =\frac(1)(2)\cdot(1^2 ) = frac(1)(2). $$

Відповідь: $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\left(\frac(\pi)(2)-x\right)^2) = frac (1) (2) $.

Приклад №11

Знайти межі $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\cos^2x)$, $\lim_(x\to\frac(2\) pi)(3))\frac(\tg(x)+\sqrt(3))(2\cos(x)+1)$.

У цьому випадку нам не доведеться використовувати першу чудову межу. Зверніть увагу: як у першому, так і в другому межах присутні лише тригонометричні функціїта числа. Найчастіше в таких прикладах вдається спростити вираз, розташоване під знаком межі. При цьому після згаданого спрощення та скорочення деяких співмножників невизначеність зникає. Я навів цей приклад лише з однією метою: показати, що наявність тригонометричних функцій під знаком межі зовсім не обов'язково означає застосування першої чудової межі.

Оскільки $\lim_(x\to\frac(\pi)(2))(1-\sin(x))=0$ (нагадаю, що $\sin\frac(\pi)(2)=1$ ) і $\lim_(x\to\frac(\pi)(2))\cos^2x=0$ (нагадаю, що $\cos\frac(\pi)(2)=0$), то ми маємо справу з невизначеністю виду $ frac (0) (0) $. Однак це зовсім не означає, що нам потрібно використовувати першу чудову межу. Для розкриття невизначеності досить врахувати, що $\cos^2x=1-\sin^2x$:

$$ \lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\cos^2x) =\left|\frac(0)(0)\right| =\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(1-\sin^2x) =\lim_(x\to\frac(\pi)( 2))\frac(1-\sin(x))((1-\sin(x))(1+\sin(x))) =\lim_(x\to\frac(\pi)(2) )\frac(1)(1+\sin(x)) = frac(1)(1+1) = frac(1)(2). $$

Аналогічний спосіб рішення є й у ґраті Демидовича (№475) . Що ж до другої межі, те як і попередніх прикладах цього розділу, ми маємо невизначеність виду $\frac(0)(0)$. Чому вона виникає? Вона виникає тому, що $ \ tg \ frac (2 \ pi) (3) = - \ sqrt (3) $ і $ 2 \ cos \ frac (2 \ pi) (3) = -1 $. Використовуємо ці значення з метою перетворення виразів у чисельнику та у знаменнику. Мета наших дій: записати суму в чисельнику та знаменнику у вигляді твору. До речі, найчастіше в межах аналогічного виду зручна заміна змінної, зроблена з таким розрахунком, щоб нова змінна прямувала до нуля (див., наприклад, приклади №9 або №10 на цій сторінці). Однак у даному прикладі в заміні сенсу немає, хоча за бажання заміну змінної $t=x-\frac(2\pi)(3)$ нескладно здійснити.

$$ \lim_(x\to\frac(2\pi)(3))\frac(\tg(x)+\sqrt(3))(2\cos(x)+1) =\lim_(x\ to\frac(2\pi)(3))\frac(\tg(x)+\sqrt(3))(2\cdot\left(\cos(x)+\frac(1)(2)\right )) =\lim_(x\to\frac(2\pi)(3))\frac(\tg(x)-\tg\frac(2\pi)(3))(2\cdot\left(\) cos(x)-\cos\frac(2\pi)(3)\right))=\\ =\lim_(x\to\frac(2\pi)(3))\frac(\frac(\sin) \left(x-\frac(2\pi)(3)\right))(\cos(x)\cos\frac(2\pi)(3)))(-4\sin\frac(x+\frac) (2\pi)(3))(2)\sin\frac(x-\frac(2\pi)(3))(2)) =\lim_(x\to\frac(2\pi)(3 ))\frac(\sin\left(x-\frac(2\pi)(3)\right))(-4\sin\frac(x+\frac(2\pi)(3))(2)\ sin\frac(x-\frac(2\pi)(3))(2)\cos(x)\cos\frac(2\pi)(3)) =\\ =\lim_(x\to\frac (2\pi)(3))\frac(2\sin\frac(x-\frac(2\pi)(3))(2)\cos\frac(x-frac(2\pi)(3) ))(2))(-4\sin\frac(x+\frac(2\pi)(3))(2)\sin\frac(x-\frac(2\pi)(3))(2) \cos(x)\cos\frac(2\pi)(3)) =\lim_(x\to\frac(2\pi)(3))\frac(\cos\frac(x-\frac(2) \pi)(3))(2))(-2\sin\frac(x+\frac(2\pi)(3))(2)\cos(x)\cos\frac(2\pi)(3 ))=\\ =\frac(1)(-2\cdot\frac(\sqrt(3))(2)\cdot\left(-\frac(1)(2)\right)\cdot\left( -\frac(1)(2)\right)) =-\frac(4 )(\sqrt(3)). $$

Як бачите, нам не довелося застосовувати першу чудову межу. Звичайно, за бажання це можна зробити (див. примітку нижче), але потреби в цьому немає.

Яким буде рішення з використанням першої чудової межі? показати\сховати

При використанні першої чудової межі отримаємо:

$$ \lim_(x\to\frac(2\pi)(3))\frac(\sin\left(x-\frac(2\pi)(3)\right))(-4\sin\frac (x+\frac(2\pi)(3))(2)\sin\frac(x-frac(2\pi)(3))(2)\cos(x)\cos\frac(2\pi )(3))=\\ =\lim_(x\to\frac(2\pi)(3))\left(\frac(\sin\left(x-frac(2\pi)(3)\) right))(x-\frac(2\pi)(3))\cdot\frac(1)(\frac(\sin\frac(x-frac(2\pi)(3))(2)) (\frac(x-\frac(2\pi)(3))(2)))\cdot\frac(1)(-2\sin\frac(x+\frac(2\pi)(3))( 2)\cos(x)\cos\frac(2\pi)(3))\right) =1cdot(1)cdotfrac(1)(-2cdotfrac(sqrt(3)) )(2)\cdot\left(-\frac(1)(2)\right)\cdot\left(-\frac(1)(2)\right)) =-\frac(4)(\sqrt( 3)). $$

Відповідь: $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\cos^2x)=\frac(1)(2)$, $\lim_( x\to\frac(2\pi)(3))\frac(\tg(x)+\sqrt(3))(2\cos(x)+1)=-\frac(4)(\sqrt( 3)) $.

Перша чудова межа часто застосовується для обчислення меж містять синус, арксинус, тангенс, арктангенс і невизначеностей, що виходять при них, нуль ділити на нуль.

Формула

Формула першої чудової межі має вигляд: $$ \lim_(\alpha\to 0) \frac(\sin\alpha)(\alpha) = 1 $$

Зауважуємо, що за $ \ alpha \ to 0 $ виходить $ \ sin \ alpha \ to 0 $, тим самим в числі і в знаменнику маємо нулі. Таким чином, формула першої чудової межі потрібна для розкриття невизначеностей $ \frac(0)(0) $.

Для застосування формули необхідно, щоб було дотримано двох умов:

  1. Вирази, що містяться в синусі та знаменнику дробу збігаються
  2. Вирази, що стоять у синусі та знаменнику дробу прагнуть до нуля

Увага! $ \lim_(x\to 0) \frac(\sin(2x^2+1))(2x^2+1) \neq 1 $ Хоча вирази під синусом і в знаменнику однакові, проте $ 2x^2+1 = 1$, при $x\to 0$. Не виконана друга умова, тому застосовувати формулу НЕ МОЖНА!

Наслідки

Досить рідко у завдання можна побачити чисту першу чудову межу, в якій можна відразу було б записати відповідь. На практиці все трохи складніше виглядає, але для таких випадків буде корисно знати наслідки першої чудової межі. Завдяки їм можна швидко визначити потрібні межі.

$$ \lim_(\alpha\to 0) \frac(\alpha)(\sin\alpha) = 1 $$

$$ \lim_(\alpha\to 0) \frac(\sin(a\alpha))(\sin(b\alpha)) = \frac(a)(b) $$

$$ \lim_(\alpha\to 0) \frac(tg\alpha)(\alpha) = 1 $$

$$ \lim_(\alpha\to 0) \frac(\arcsin\alpha)(\alpha) = 1 $$

$$ \lim_(\alpha\to 0) \frac(arctg\alpha)(\alpha) = 1 $$

Приклади рішень

Розглянемо першу чудову межу, приклади рішення якої на обчислення меж, що містять тригонометричні функції і невизначеність $ \bigg[\frac(0)(0)\bigg] $

Приклад 1
Обчислити $ \lim_(x\to 0) \frac(\sin2x)(4x) $
Рішення

Розглянемо межу і зауважимо, що в ньому є синус. Далі підставимо $ x = 0 $ у чисельник і знаменник і отримаємо невизначеність нуль ділити на нуль: $$ \lim_(x\to 0) \frac(\sin2x)(4x) = \frac(0)(0) $$ Вже дві ознаки того, що потрібно застосовувати чудову межу, але є невеликий нюанс: відразу застосувати формулу ми не зможемо, тому що вираз під знаком синуса відрізняється від виразу, що стоїть у знаменнику. А нам потрібно, щоб вони були рівними. Тому за допомогою елементарних перетворень чисельника ми перетворимо його на $2x$. Для цього ми винесемо двійку із знаменника дробу окремим множником. Виглядає так: $$ \lim_(x\to 0) \frac(\sin2x)(4x) = \lim_(x\to 0) \frac(\sin2x)(2\cdot 2x) = $$ $$ = \frac(1)(2) \lim_(x\to 0) \frac(\sin2x)(2x) = \frac(1)(2)\cdot 1 = \frac(1)(2) $$ Зверніть увагу , що наприкінці $ \lim_(x\to 0) \frac(\sin2x)(2x) = 1 $ вийшло за формулою.

Якщо не вдається вирішити своє завдання, то надсилайтеїї до нас. Ми надамо детальне рішення. Ви зможете ознайомитися з ходом обчислення та отримати інформацію. Це допоможе вчасно отримати залік у викладача!

Відповідь
$$ \lim_(x\to 0) \frac(\sin2x)(4x) =\frac(1)(2) $$
Приклад 2
Знайти $ \lim_(x\to 0) \frac(\sin(x^3+2x))(2x-x^4) $
Рішення

Як завжди спочатку потрібно дізнатися про тип невизначеності. Якщо вона нуль ділити на нуль, то звертаємо увагу на наявність синуса: $$ \lim_(x\to 0) \frac(\sin(x^3+2x))(2x-x^4) = \frac(0) (0) = $$ Дана невизначеність дозволяє скористатися формулою першої чудової межі, але вираз із знаменника не дорівнює аргументу синуса? Тому "в лоб" застосувати формулу не можна. Необхідно помножити і розділити дріб на аргумент синуса: $$ = \lim_(x\to 0) \frac((x^3+2x)\sin(x^3+2x))((2x-x^4)(x ^3+2x)) = $$ Тепер за властивостями меж розписуємо: $$ = \lim_(x\to 0) \frac((x^3+2x))(2x-x^4)\cdot \lim_(x \to 0) \frac(\sin(x^3+2x))((x^3+2x)) = $$ Друга межа якраз підходить під формулу і дорівнює одиниці: $$ = \lim_(x\to 0 ) \frac(x^3+2x)(2x-x^4)\cdot 1 = \lim_(x\to 0) \frac(x^3+2x)(2x-x^4) = $$ Знову підставляємо $ x = 0 $ на дріб і отримуємо невизначеність $ \frac(0)(0) $. Для її усунення достатньо винести за дужки $x$ і скоротити на нього: $$ = \lim_(x\to 0) \frac(x(x^2+2))(x(2-x^3)) = \ lim_(x\to 0) \frac(x^2+2)(2-x^3) = $$ $$ = \frac(0^2 + 2)(2 - 0^3) = \frac(2 )(2) = 1 $$

Відповідь
$$ \lim_(x\to 0) \frac(\sin(x^3+2x))(2x-x^4) = 1 $$
Приклад 4
Обчислити $ \lim_(x\to0) \frac(\sin2x)(tg3x) $
Рішення

Обчислення почнемо з підстановки $x=0$. В результаті отримуємо невизначеність $\frac(0)(0)$. Межа містить синус та тангенс, що натякає на можливий розвиток ситуації з використанням формули першої чудової межі. Перетворимо чисельник і знаменник дробу під формулу та наслідок:

$$ \lim_(x\to0) \frac(\sin2x)(tg3x) = \frac(0)(0) = \lim_(x\to0) \frac(\frac(\sin2x)(2x)\cdot 2x )(\frac(tg3x)(3x)\cdot 3x) = $$

Тепер бачимо в чисельнику і знаменнику з'явилися вирази, що підходять під формулу і слідства. Аргумент синуса та аргумент тангенсу збігаються для відповідних знаменників

$$ = \lim_(x\to0) \frac(1\cdot 2x)(1\cdot 3x) = \frac(2)(3) $$

Відповідь
$$ \lim_(x\to0) \frac(\sin2x)(tg2x) = \frac(2)(3) $$

У статті: "Перша чудова межа, приклади рішення" було розказано про випадки, в яких доцільно використати цю формулу та її наслідки.